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An Introduction to Singular Perturbations

The books of Wasow (1965), Vasil'eva and Butuzov (1973), and O'Malley

(1974) all discuss the asymptotic solution of singularly perturbed initial

value problems for vector systems of the form

= f(o,fg,t,), (0) prescribe

OT C .h , g(a, 3,t,E), 3(O) prescribed

on a finite orsemi-infiniteintervalwhere t > 0. Here c is a smail positive

parameter and an asymptotic solution valid as c - 0 is sought. Assuming

a little si oothness and assuming that the eigenvalues of the Jacobian matrix

9 -.re ttrictly stable (i.e., have strictly negative real parts) everywhere

implies that the asymptotic solution has the form(upj~4DTrO
(2) - cdt) = MMt + 0(c)

(t= N(t) + rn(t/c) + O(W S NOV 011980j

ji) where M and N satisfy the "reduced" system . E -

M : f(M,N,t,O), M(O) = a(O)
:l If. (3)

0 = g(M,N,t,O)
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and n(T) is an asymptotically stable solution of the (parameterless)

"boundary layer" problem

d- g(M(O), N(O) + 9,0,0), T > 0

(4) [n(o) = - N(O).

The 0(e) terms represent small residuals bounded in magnitude (on fixed

finite t intervals) by CE, for some bounded constant C, provided c is

sufficiently small. Hoppensteadt (1966) further showed that such results2kr-

continue to hold for all t > 0 provided M and N decay exponentially as

'ion

It is essential to realize the substantial order reduction achieved

through the approximations (2). The implicit function theorem guarantees'on

a locally unique solution VltCOdoS
Avail anid/or.

blot. Specialnil
of the nonlinear system g(M,N,t,0) = 0. (In practice, numerica or -

symbolic solution methods would be used to obtain p, especially when 0

has many components and the order reduction is substantial.) Knowing €,

M(t) follows from solving the initial value problem

(6) M = F(M,t) E f(M, (M,t),t,0), M(0) = c(0).

With our hypotheses (or, e.g., the weaker ones of Howes (1979)), a unique

solution n(T) of (4) will decay to zero as the "stretched variable" t/E -.

Thus, the n-term allows nonuniform convergence (as c - 0) of the i variable

in a narrow "boundary layer" region near t = 0. Since n becomes negligible as

e - 0 for each fixed t > 0, the limiting solution away from t = 0 is uniquely

determined by the solution M(t) of the reduced problem (6) and by N(t) = *(M(t),t).
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The reduction of order is completely analogous to the pseudo-steady

state hypothesis of chemical kinetics. In the celebrated enzyme kinetics

theory of Michaelis and Menton, an e can be introduced (as in (1)) as the

ratio of the initial enzyme to the initial substrate concentrations (cf.

Heinekin et al.(1967) and Murray (1977)). Solving the reduced problem,

instead of the original problem with its fast initial transient (repre-

sented by n(t/ in (2)) is most advantageous for purposes of numerical

integration (cf. Aiken and Lapidus (1974) and Miranker (1980)). The full

system will be stiff for small values of e, and stability requirements for

Euler's method and similar explicit schemes will force one to use a small

stepsize for t > 0, even though the solution is smooth there. As Shampine

(1980) and Dahlquist et al.(1980) point out, implicit schemes for the full

system may not so restrict the stepsize and may actually be solving systems

closely linked to the reduced problem (3).

The preceding hypotheses are restrictive, and it should be realized

that related (though less complete) results are available in other (more

complicated) contexts (cf., e.g., Bavinck and Grasman (1969), Hoppensteadt

and Miranker (1976), O'Malley and Flaherty (1980), Bobisud and Christenson

(1980), and O'Malley (1980)). If, for example, g y is (everywhere) singular,

we cannot expect to uniquely determine the limiting solution from the re-

duced problem alone. If gy has purely imaginary eigenvalues, we can expect

rapidly oscillating solutions. If g has eigenvalues with both positive and

negative real parts, the boundary layer system is conditionally stable and we

can expect nonuniform convergence (boundary layer behavior) for corresponding

two-point problems at both endpoints. Considerable complexity can be expected

when (where) the eigenvalue structure of gy changes (both bifurcation theory

and turning point theory may be called for).

Real problems naturally simultaneously involve many small parameters.
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Detailed theories are available for problems with several interrelated para-

meters (cf. O'Malley (1969)) and, even, for t-dependent parameters (cf.

Gingold (1980)). The one parameter c in (1) should be interpreted as an

aggregate parameter used to distinguish the "fast" variables a from the "slow"

variables a. More refined models could use several small parameters to

distinguish different groupings of fast variables. Indeed, a realistic

modeler often introduces a hierarchy of models, increasing in dimensionality,

allowing increasingly accurate models of the same system. In practice, re-

searchers will make different decisions regarding both the overall number of

components employed and the appropriate number of variables for reduced-

order models.

The structure of the singular perturbation problem (1) is very special,

because the components a are clearly separated (via the parameter c) from

the 6 components which are anticipated to be more rapidly varying, at least

in narrow boundary or interior transition regions. In applied problems,

practitioners often know which variables are "fast." There is, for example,

a natural dichotomy when one deals with dynamics involving both electrical

and, relatively sluggish, mechanical components. Analogous obvious splittings

commonly occur in chemical contexts as well. Often, however, variables are

not completely decoupled into fast and slow sets and a preliminary decoupling

procedure must be used before singular perturbation concepts become helpful

(i.e., before a meaningful small parameter e can be introduced.) Numerical

decoupling methods are currently being developed by Enright and Kamel and by

Dahlquist and SUderlind (preliminary work is reported in Enright and Kamel

(1979) and Sdderlind (1979)). We also note the emphasis of Dahlquist et al.

(1980) on scaling techniques for nonlinear differential systems in dimension-

less variables (cf. Lin and Segel (1974) as well). Our experience relates

primarily to models for aircraft engines, structural dynamics, and power
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distribution and generation (cf. 0'Malley and Anderson (1980), Anderson

and Hallauer (1980), Kokotovic et al.(1980), and Girijashankar et al.

(1980)). We expect, however, that the underlying strategy will be appli-

cable in chemical systems and a wide spectrum of other fields.

Linear Systems without Explicit Parameters

We shall consider large-scale linear systems of the form

(7) x = A(t)x + u(t)

where u(t) is a forcing function, not a feedback control. Such a system

could, of course, be obtained from linearizing a nonlinear system about a

nominal trajectory. The initial behavior of any solution will depend on

the eigenvalues of A(0). Let us suppose that

(Hl). nI of the eigenvalues of A(O) are small

in magnitude compared to the remaining

n2 = n-n1 eigenvalues.

(A finer subdivision may be appropriate for a more careful model.) If

such a slow/fast split in solution modes for the homogeneous system could

be maintained, we might hope (as for the singularly perturbed system (1))

that the approximate dynamics of the full n th order system (7) (away from

transient regions) could be given by a lower nI th order system.

We will first try to transform system (7) to a decoupled form by use

of a transformation

(8) y = T(t)x = T2(t) TI(t)x = T2(t)z

where T and T2 are the block-triangular matrices

law
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(9) in o

: ,;I TlLtt)

T M L(t) I "I

and

Ini K(t)

(10) T2(t) =

0 I
n2

specified by the decoupling matrices L(t) and K(t). Since these matrices

are easily inverted, we immediately have the inverse

I -K

-L I + LKIn2

If we subdivide A = (Aij) after its first nI rows and columns, the inter-

mediate variable z = TIx will satisfy

z = B(t)z + Tl(t)u

with the compatibly partitioned B = (Bij) being upper block triangular

provided L(t) satisfies the matrix Riccati equation

(1I) 1 = A22 L - LAI1 + LA12 L - A21



Specifically, we note that

(12) B11 = A11 - A12 L, B12 = A12, B21  0, and B22 = A22 + LA12.

We also note that transformations such as (9) occur in many classical con-

texts, including reduction-of-order (cf. Hartman (1964)) and asymptotic

theory (cf. Wasow (1965)). Here, the matrix L is generally nonsquare and

the Riccati equation has time-varying coefficients, in contrast to the

symmetric and time-invariant case most familiar in control and estimation

theory (cf. Van Dooren (1980)). In the general context needed here, con-

ditions guaranteeing existence of the Riccati solution do not seem to be

known. Most available theory is contained in Reid (1972), Medanic (1979),

and Bart et al. (1979). Blowup of solutions can, of course, be detected

in numerical solutions and "integration to blowup" is actually used to

calculate eigenlengths (cf. Nelson and Elder (1977)). It would be helpful

to know which solution of the Riccati equation one should use (i.e., which

initial value to impose for L(O)) to prolong the interval of existence or

to optimize the stability of a numerical solution technique.

Using the second transforming matrix T2 (t) and splitting the variable y

after its first n1 rows provides the decoupled system

Yl B11  0Y

(13) 1 + T(t)u

Y2 0 B22 Y2

provided the matrix K satisfies the linear system

(14) K = B11 K - KB22 - A12.

t
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(A block diagonalization is actually unnecessary to decouple modes of

the unforced system since Tl already achieved a block triangularization,

but we proceed to diagonalize because obtaining K is relatively easy.)

Altogether, then, we have shown that solving the original vector or

matrix system (7) (thereby finding a fundamental matrix for the homo-

geneous problem) is equivalent to solving the four systems

L = A22L - LA11 + LA12 L - A21

K = (A11 - A12 L) K - K(A22 + LA12) - A12
(16)

yl= (All - Al2 L) Y + (Inl +KL K)u

Y2  (A22 
+ LA1 2) Y2 + (L In2)u

We hope to convince the reader, that with the right hypotheses, we can

determine solutions to these systems easier than solving the original

system directly.

Note that if L(O) = 0, T1 (0) will be a similarity transformation,

and B(O) and C(O) will have the same eigenvalues as A(O). We would have

succeeded in separating the initially fast (and slow) modes of the trans-

formed homogeneous system if we could guarantee that the n1 smallest

eigenvalues of B(O) (identified by hypothesis (Hl)) are those of BI1(0)

(the n2 largest eigenvalues will then automatically be those of B22(0)).

The algebraic Riccati equation E(O) = 0 for L(O) will have many solutions,

but that solution L(O) which makes the eigenvalues of B11(0) = A1 I(O)-A 12(O) L(O)

coincide with the nI small eigenvalues of A(O) is unique. This result is

well-known for the symmetric algebraic Riccati equation (cf. Martensson
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(1971)) and it was proved in Anderson (1979) in our nonsquare con-

text. Anderson also showed that the appropriate L(O) could be

readily obtained by iterating. For computational purposes, one

defines

(17) ei+l = (A22(o) + fi A12 (O))-I (Ai A11(0) + A 2 (O))

for each i > 0 and lets L(O) = lim 9. This scheme turns out to

be robust with respect to initial iterates ko and it converges like

a geometric series with ratio v proportional to the quotient of the

largest small to the smallest large eigenvalue of A(O). An alter-

native representation is L(O) = -M M-1 where spans the n di-
'2 H1  L spnthn 1 d-M

mensional (generalized) eigenspace of the small eigenvalues of A(O).

(A less convenient computational approach to finding L(O) would then

be to approximate a basis for this eigenspace and form the indicated

quotient.) This formula makes it clear that a rearrangement of the

components of x may be necessary to assure the invertibility of M . Any

ill-conditioning of M can also cause difficulties (cf. Watkins (1980)).

We shall assume that our system is "two-time scale" after the trans-

formation, viz

(H2) the solution L(t) of the initial value problem for

the matrix Riccati equation remains bounded through-

out a fixed interval 0 < t< T and the eigenvalues of

the matrix B11 (t) = A11 - A12 L remain small in mag-

nitude compared to those of B22(t) = A22 + L A12

throughout the interval.
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Under this hypothesis, the free (i.e., unforced) response of the first

nI components of the decoupled system for y will be much slower than

that of the last n2 components. (For two point problems, T will represent

the right endpoint, while it should be a typical length scale for initial

value problems.) In practice, it may be advisable to reinitialize L(t)

from time-to-time, just as the Scott and Watts'(1977) boundary value code

reorthogonalizes to maintain stability.

Specializing to initial-value problems for (7), let us also impose a

"fast-mode stability" hypothesis, viz

(H3) the eigenvalues of B22 (t) all have large strictly

negative real parts throughout 0 < t < T.

In using this assumption, we are close to succumbing to a popular heresy:

that eigenvalue stability implies stability. This is incorrect for time-

varying systems, as Hoppensteadt (1966) points out by counterexample. As

our initial statement shows, however, it is true for singularly perturbed

systems with appropriately smooth coefficients. Kreiss (1978, 1979)

presents a counterexample, but not in the special structure generally

assumed. We could carry out an explicit and rigorous analysis involving

the two small parameters implicitly introduced by assumptions (H2) and (H3),

but this would require definite assumptions about parameter dependence

that we wish to avoid being explicit about.

We note that the differential system (14) for K is opposite in stability

to the linearized equation

(18) 1 + k B22
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for L. Since (H2) implies that the initial value problem for L(t) is

well-behaved, (backward) numerical integration of a terminal value

problem for K is suggested. Taking K(T) = 0 uniquely determines K(T)

since the resulting system for K(T) is a linear one whose coefficient

matrices Bll(T) and B22 (T) have no eigenvalues in common (cf., e.g.,

Bellman (1970)).

Because (H-3) implies that B22 (t) has eigenvalues with large nega-

tive real parts, the system (14) for K(t) can be rewritten in the trad-

itional singular perturbation form with a small-parameter multiplying

the derivative. Indeed, the usual theory implies that the limiting

solution for t < T will satisfy a reduced system K(t) = 0 (i.e. a pseudo-

steady state approximation will apply.). Because we have K(T) = 0, we'd

expect no discontinuity at T. K(t) can, then, be readily calculated as

the limit of the iteration

(19) Kj~1  -B1 (A12 - Bll K)

(The derivative term can also be retained as a small perturbation in the

right-hand-side.) Thus, the differential system (14) for K has been

essentially replaced by an easier-to-solve linear algebraic equation

K(t) = 0. In conducting numerical experiments, we've found that the

pseudo-steady state algebraic Riccati equation L(t) = 0 is quite a good

approximation for finding L(t) for t > 0, but we are not willing to generally

recommend that drastic simplification. We note that the linearization (18)

(about a solution L of our Riccati system) is singularly perturbed under

our hypotheses, but the original system (11) is not of singular perturbation

form. SUderlind and Dahlquist (personal conversation) are, however, ex-

periencing success in using piecewise constant solutions to algebraic

Riccati equations in similar contexts.
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Once L and K are (approximately) determined, there remain linear

systems for y, and Y2" The "fast" system

(20) Y2 = B22 (t)Y2 + [L In] u(t)

will be amenable to a pseudo-steady state approximation Y2 = 0 away from

t = 0 provided the resulting approximate Y2s is slowly-varying. Thus,

we'll finally ask

(H4) The approximation

Y2s(t) -B-1 (L I ) u

is slowly-varying

(i.e. Y2s is small) throughout 0 < t < T. Even though B22 is large, note

that this might be difficult to achieve if u(t) were rapidly varying. If

the initial behavior of Y2 is important, one needs to add a "fast" initial

layer corrector Y2f to the "slow-mode" solution Y2s. The corrector will

be a decaying solution to Y2f = 822 (t)Y2f" Because of our hypothesis (U3),

this system would only need to be integrated - with a small stepsize -

over a short initial interval. This correction will be initially important

because Y2s(0) Y2 (0) will generally force an initial nonuniform convergence

in Y2 components.

The remaining "slow" system (16) for y, will be integrated as an initial

value problem using the transformed initial condition

Yl(O) = [I + K(OIL(O) K(O)] x(O). Having found (or approximated) L, K, yl,

and Y2' the inverse transformation

(21) x(t) =

-L(t) I + L(t) K(t) Y2(t)
n2
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provides (an approximation for) the original variable x(t). Altogether,

for t > 0, our approximations allow us to obtain an approximate funda-

mental matrix for x by integrating the systems for L and y, and using

algebraic systems for K and Y2"

In practice, we've solved initial value problems for vectors of

dimensionsfour to sixteen (cf. O'Malley and Anderson (1980)) with two

to five corresponding slow modes providing order reduction. Away from

the initial point, good approximations were soon achieved by the low

order models even though the parameters measuring time-scale separation

and fast-mode stability were only moderately small. For such low order

models, we have the advantage of being able to compare results to accurate

solutions obtained numerically with small stepsizes. More testing is

needed for higher dimensional models, where it is essential to use one's

physical insight to a maximum to make initial decisions on which components

are expected to be predominantly slow or fast. More effort should also be

spent on boundary value problems. There the advantages of our asymptotic

techniques will be even greater than for initial value problems.

Use of some of these concepts for nonlinear problems has been reported by

Kreiss (1979), Girijashankar et al. (1980), Kokotovic et al. (1979), and

Watkins (1980).
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